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Ordinary Differential Equations (ODEs)

Differential equations describe the evolution of systems in continous time and are
widely used in science and engineering. Here, we will focus on the first order ordinary
differential equations:

ẋ(t) = f (x(t), t) , (1)

where ẋ(t) ≡ dx
dt

is the first derivative of x(t) with respect to time t. The solution
to this equation is the function (dynamical variable) x(t) which satisfies the above
relation.

Exercises

1. Numerical solutions to ODEs

The simplest numerical method of solving the equation (1) is by discretization.
Lets assume that the function x(t) is constant over short time interval ∆t. We
can then rewrite the equation using finite steps:

x̃i+1 = x̃i + f(x̃i, i∆t)∆t, for i = 0, 1, . . . , N (2)

In order to find the solution, we start with the value x0 = x(0) given by in-
itial condition and then proceed by adding small increments to the function
according to the equation (2). This algorithm is called an Euler method.

(a) Define a Python function which calculates and returns a numerical solution
to any first-order ODE. The function should take as an argument the
function describing the right-hand side of ODE f(x, t), an initial condition
x0, an integration step ∆t and a stop time Tmax = N∆t.

(b) A population growth can be modelled with so-called logistic model:

dx

dt
= rx(1− x) (3)

where r is a growth parameter.

Using the Euler method solve the logistic equation with different initial
conditions and values of the parameter r.



(c) Plot the numerical solutions to the logistic model with different integration
steps ∆t and compare them to the analytical solution:

(d) Calculate the mean square error between the numerical solutions x̃i and
the analytical x(t) solutions as a function of ∆t:

MSE =
1

N

N∑
i=0

(x̃i − x(i∆t))2 (4)

How does the accuracy change with the integration step ∆t?

2. Passive membrane

The following equation describes a passive membrane, which is subject to a
current injection:

τm
dV (t)

dt
= −V (t) + Em +RmI(t) (5)

At time t = 0 membrane voltage is at rest V (t = 0) = Em.

(a) Build a model neuron from equation (5). Use Rm = 107 Ω, I(t) = I0 =
10−5 mA, τm = 10 ms, E = −80 mV. Using Euler method find V (t) as a
function of time.

(b) Consider the following time-dependent current injection:

I(t) =

{
10−5 mA if 100 ≥ t ≥ 10,

0 otherwise.

Find a numerical solution for V (t). Repeat the calculations for several
values of the membrane time constant τm.

3. Integrate-and-fire neuron

Linear models are unable to produce realistic action potentials, but spikes can
be simulated in such models with a simple reset mechanism.

(a) Modify the Euler method so that every time when the membrane potential
reaches the threshold Vth = −54 mV a spike is generated and the potential
is set to the value Vreset = Em.

(b) Using the integration with reset simulate the neuron from Exercise 2 with
a constant current intensity I0. Show the voltage traces for 500 ms.

(c) Calculate and plot the mean firing rate as a function of input intensity.
How do you interpret the results?
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