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Action potential propagation

The aim of the project is to model the propagation of an action potential along an
axon. The relationship between the membrane current ¢,, and the voltage along an
axon is given by the equation:
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where a is the radius of the axon, ry is intracellular resistivity.
The ionic current flowing through a patch of axonal membrane i,, is well-described
by Hodgkin-Huxley model:

Z‘m = gNam3h(V - ENa) + gKn4(V - EK) + gL(V - EL)7 (2)

where m, n, h are Hodgkin-Huxley-type activation variables.

Combining these two equations leads to a partial differential equation which can
be computed numerically by multi-compartmental approximation. In a nonbranching
cable, each compartment is coupled to two neighbours and the equations for the
membrane potentials of the compartments are:

v, ., It
Cn = 5 Gt (Vi = Vi) + gy (Vs = Vo), ®)
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where p labels the compartments, I# is the total electrode current flowing into the
compartment p, and A, is its surface area. The constant g, , 1 determines the
resistive coupling of the compartments and for nonbranching cables can be shown
to be equal to g,,-1 = a/(2r,L?). This defines a system of ordinary differential
equations which can be solved with Euler method and its modifications.

Problems

1. Numerically solve the cable equation for passive membrane (i.e. i, = (V —



Viest)/Tm). Compare the solution to the analytical solution. Take r,,, = 1MQmm?,
r; = 1kOQmm?.

2. Implement the Hodgkin-Huxley model of action potential propagation. Solve
the partial differential equation using methods described in Chapter 6.6B of [1].
Take r = 0.238 mm and r;, = 35.4 Qcm.

3. Initiate an action potential on one end of the axon by inserting a current in the
terminal compartment.

4. Determine action potential propagation velocity as a function of the axon radius.

5. Generate action potentials from both ends of the axon. Show that they annihi-
late when they collide.

6. Simulate action potential propagation in a myelinated axon.
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