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BERNSTEIN CENTRE FOR COMPUTATIONAL

NEUROSCIENCE

Bernstein Center for Computational Neuroscience Phone: 030/2093-9110

Humboldt-Universität zu Berlin Fax: 030/2093-6771

Philippstr. 13 House 6 webpage: http://www.bccn-berlin.de/

Models of Neural Systems I, WS 2008/09
Computer Practical 6

Stochastic Models of Neural Activity

The responses of single neurons to external stimulations vary from trial to trial even if
the same stimulus is presented. Therefore, it make often sense to model the neuronal
activity by stochastic processes, such as Poisson process. In this exercise we will
generate and analyse random spike trains generated from various distributions.

Exercises

1. Poisson Process

(a) Generate a sequence of spike counts from Poisson distribution:

p(n) =
(λT )n

n!
exp(−λT ), (1)

where λ is a firing rate and T counting window width.

You can obtain spike counts from the Poisson distribution by transforming
random numbers through the inverted cumulative Poisson distribution.

Take λ = 10 Hz and several different choices of T . Plot the histogram of
the obtained spike counts and show that it approximates well the Poisson
distribution.

(b) Simulate Poisson spike trains using Bernoulli approximation:

p(spike in [t, t + dt]) = λdt. (2)

Choose dt very small so that the λdt ≈ 0. Plot the resulting spike trains.
Calculate spike count distribution in windows of different widths and com-
pare the results to the histograms from exercise (a). Calculate Fano factor:
F = σ2

n
/µn where σ2

n
is the variance of spike counts and µn their mean.

(c) Calculate interspike interval distribution of spike trains obtained in (b) and
show that it follows exponential distribution p(τ) = λ exp(−λτ). Calculate
the coefficient of variation CV = στ/µτ , where στ is the standard deviation
of the interspike intervals and µτ their mean.



(d) (Optional) Generate inhomogeneous Poisson process with firing rate given
by f(t) = 100(1 + cos(2πt/300)). Estimate time-dependent firing rate by
calculating the number of spikes in a sliding window.

Hint: You can use numpy.convolve function.

2. Introducing refractoriness

(a) Generate Poisson process as in 1b. Introduce absolute refractory period by
simply removing spikes with interspike intervals shorter than the refractory
period τref . Plot interspike intervals distribution. Repeat the simulations
for different values of τref . Each time calculate the coefficient of variation
CV . What happens when τref is increased?

(b) (Optional) Simulate spike trains with relative refractory period using Ber-
noulli approximation where probability of emitting a spike is given by:

p(spike in [t, t + dt]|tlast) = λr(t − tlast)dt, (3)

where tlast is the time of the last spike and r(t) is a recovery function. You
can model the recovery function by r(t) = 1/(1 + exp(−(t − τref))). Plot
interspike intervals distribution. How do you interpret r(t)?

3. Orientation-selective neurons in primary visual cortex (V1)

The spiking of cortical cells was shown to be very irregular. Therefore it can
be often described by one of the stochastic models discussed above. In this
exercise, we will implement a simple stochastic model of an orientation-selective
V1 neuron.

(a) Many neurons in V1 cortex were shown to modulate their firing rate to
presentations of bars of different orientations. The dependence is described
usually by so-called orientation tuning curve which can be modelled by the
following function:

f(s(t)) = λmax exp [cos (s(t) − smax)] , (4)

where λmax is the maximum firing rate, smax is the optimum orientation of
the neuron.

Implement a Poisson model without refractoriness whose firing rate is given
by Equation 4.

(b) Simulate the response of the neuron to a bar rotating with a constant an-
gular velocity. Repeat the simulation several times with the same stimulus.
Plot a raster of the spikes elicited in each trial. Plot the post-stimulus time
histogram of the spikes by binning the time axis and summing the number
of spikes obtained in each bin over all trials.

(c) What are the limitations of the model? How could it be improved?
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