
HUMBOLDT-UNIVERSITÄT ZU BERLIN

BERNSTEIN CENTRE FOR COMPUTATIONAL

NEUROSCIENCE

Bernstein Center for Computational Neuroscience Phone: 030/2093-9110

Humboldt-Universität zu Berlin Fax: 030/2093-6771

Philippstr. 13 House 6 webpage: http://www.bccn-berlin.de/

Models of Neural Systems I, WS 2008/09
Computer Practical 5

Reinforcement Learning

Today we implement a variant of a reinforcement learning algorithm. In general, rein-
forcement learning lies between supervised and unsupervised learning. In supervised
learning, the learning algorithm receives feedback in terms of the correct learning
patterns; it is exactly told what its response should be. In contrast, in reinforcement
learning the feedback is rather general; it is told whether a response was ‘good’ or
‘bad’. We implement a variant called temporal-difference (TD) learning, for which
there is good evidence that the brain uses this learning algorithm.

Exercises

1. Temporal Difference (TD) algorithm
The TD algorithm learns to predict the total future rewards P (t) on the basis
of sensory stimuli. Its main component is so-called reward prediction error δ(t),
which evaluates the difference between the actual and predicted future reward.
The goal of the algorithm is to minimise the error by means of modification of
the weights w(t) relating the current state s(t) to the future reward:

P (t) = w(t)s(t) (1)

It can be shown that the problem can be solved with the following weights’
update rule:

w(t + 1) = w(t) + ηδ(t)s(t − 1), (2)

where η is a learning rate.

The TD algorithm can be implemented by performing the following tasks in
each consecutive discrete time step:

(a) Update a state vector s(t) so that its components represent (non)-occurrence
(encoded by 1s and 0s) of stimulus in the past time steps with the first com-
ponent representing the current time step and the following components
going back in past.



(b) Calculate the predicted future reward according to Equation 1.

(c) Estimate the prediction error in each time step with the following expres-
sion: δ(t) = P (t)−P (t− 1) + r(t), where r(t) is the reward at the current
time step.

(d) Update the weights according to TD update rule (Equation 2) and go to
the next time step.

(e) Repeat (a)-(d) with t = t + 1. Note that (as for other learning paradigms)
the number of iterations needed for learning depends on the learning task
and the parameters.

2. Classical conditioning
We now simulate a simple classical conditioning experiment in which a reward
is associated with an arbitrary stimulus occurring earlier (such as food with the
ringing of a bell in a Pavlov experiment).

Imagine a monkey in front of a TV screen. From time to time the screen shows
different symbols and in some cases these symbols are followed by a reward
(e.g. orange juice for the monkey).

(a) We define a trial as a sequence of several 15 discrete time steps t. At a
time step t = 5 a stimulus occurs (a symbol appears on the TV screen).

Hint: Implement a state vector which has as many components as there
are time steps in the trial.

(b) Set a reward value r(t) so that it is always zero, except at time step t = 10
where it is set to 1.

(c) Initialise the weights with a null vector. Run the TD algorithm several
trials each time using the same stimuli and rewards.

Note: The weights are NOT re-initialised after each trial.

(d) Plot the prediction error δ(t), the w(t), and the reward prediction P (t) as
a function of trials. Explain the obtained results. How do you interpret the
variables? What has been learned by the algorithm?

(e) Compare the prediction error with the activity of dopamine neurons shown
Figure 2 in the paper from Schultz, W. (1998). Predictive reward signal of
dopamine neurons. J Neurophysiol 80(1):1-27.

3. (Optional) Extending the paradigm

(a) Extend the paradigm so that there is not only one type of stimulus, but
in total 4 types of stimuli (still only one stimulus per trial). Each stimulus
type needs its own state and weight vector representation (so instead of a
e.g. 1×15 array, your vectors should become 4×15 arrays). Each stimulus
type should have an individual reward probability; one of them is followed
by a reward at time step 15 with 100%, one with 75% and one with 50%
and one with 25%. Plot again the prediction error for each stimulus type
as a function of trials and compare the weight vectors after learning.

Compare your results with Figure 3B and 4 in this paper: Morris et
al. (2005). Coincident but Distinct Messages of Midbrain Dopamine and
Striatal Tonically Active Neurons. Neuron 43(1), 133-143.



(b) Modify the weight change into: w(t + 1) = w(t) + ηδ(t)e(t). e(t) is the
so-called eligibility trace and contains a representation of past states. It is
updated after the weight changes in each time step by e(t) = λe(t−1)+s(t).
The parameter λ determines for how long past states stay represented. For
λ = 0 the eligibility traces always contains only the most recent state which
is equivalent to the basic implementation above. How do nonzero values
for λ change learning?

Contact

Robert Schmidt (ITB, r. 2316) Phone: 2093-8926 Email: r.schmidt@biologie.hu-berlin.de

Bartosz Telenczuk (ITB, r. 1309) Phone: 2093-8838 Email: b.telenczuk@biologie.hu-berlin.de


