

HUMBOLDT-UNIVERSITÄT ZU BERLIN

BERNSTEIN CENTRE FOR COMPUTATIONAL NEUROSCIENCE

Bernstein Center for Computational Neuroscience Humboldt-Universität zu Berlin Philippstr. 13 House 6

Phone: 030/2093-9110 Fax: 030/2093-6771 Webpage: http://www.bccn-berlin.de/

Models of Neural Systems I, WS 2008/09 Computer Practical 3

Supervised Learning

In this exercise we will introduce a simple neuron model proposed by McCulloch and Pitts (1943). This model provides historically first simplification of biological neurons as computation units. We will show how such neurons can be trained with supervision to perform real-world computations, such as logical functions and classification. Finally, we will explore its severe limitations.

Exercises

1. McCulloch-Pitts neuron

(a) Implement a McCulloch-Pitts neuron (see the diagram):

$$y(\mathbf{x}) = \operatorname{sgn}\left[\mathbf{w}^T\mathbf{x}\right],$$

where $\mathbf{x} = [1, x_1, x_2, \dots, x_k]$ is a vector of inputs, $\mathbf{w} = [w_0, w_1, w_2, \dots, w_k]$ is a vector of weights and $y(\mathbf{x})$ is the output.

(b) Take weights w = [-3, 2, 2] and two binary inputs $x_1, x_2 = 0, 1$. Show that the neuron performs a logical AND operation.

2. Rosenblatt's perceptron

(a) Prepare a training set $\{\mathbf{x}(i), d(i); i = 1, 2, ..., n\}$, where $\mathbf{x}(i)$ is the input vector and d(i) is the desired response. Let the desired response be a comparison between two inputs:

$$d(i) = \begin{cases} 1, & \text{if } x_1(i) \ge x_2(i), \\ -1, & \text{if } x_1(i) < x_2(i). \end{cases}$$

(b) Train a McCulloch-Pitts neuron on the training set using an error-correction update rule:

$$\mathbf{w}(k+1) = \mathbf{w}(k) + \eta [d(k) - y(\mathbf{x}(k))]\mathbf{x}(k).$$
(1)

Present the training set repeatedly until no weight changes.

- (c) Test on a new dataset (validation set) that the neuron can perform a comparison function.
- (d) (Optional) Plot the training set distinguishing between the response classes. Superimpose the weight vector on the same plot (without bias term x_1). Explain why the weight vector is optimal.

3. (Optional) Linear separability

- (a) Train perceptron to perform XOR operation on binary inputs.
- (b) Show that the learning algorithm does not converge i.e. the weights do not set to fixed values.
- (c) Sketch the XOR classification problem on an Euclidean plane. Explain why the problem is not linearly separable.

Contact

Robert Schmidt (ITB, r. 2316) Phone: 2093-8926 Email: r.schmidt@biologie.hu-berlin.de Bartosz Telenczuk (ITB, r. 1309) Phone: 2093-8838 Email: b.telenczuk@biologie.hu-berlin.de