bccn

HUMBOLDT-UNIVERSITÄT ZU BERLIN

BERNSTEIN CENTRE FOR COMPUTATIONAL NEUROSCIENCE

BERNSTEIN CENTER FOR COMPUTATIONAL NEUROSCIENCE HUMBOLDT-UNIVERSITÄT ZU BERLIN PHILIPPSTR. 13 HOUSE 6 Phone: 030/2093-9110 Fax: 030/2093-6771 Webpage: http://www.bccn-berlin.de/

Models of Neural Systems I, WS 2007/08 Computer Practical 4 Discussed on 12th Nov 2007

Linear Membrane Models

Under normal physiological conditions the relation between the ion current flowing through a membrane I_i and the membrane potential V can be approximated by Ohm's law:

$$I_i = g_i (V - E_i), \tag{1}$$

where g_i is a conductance for a given ion and E_i is its reversal potential. In general the conductance can be time- and voltage-dependent. Here we will investigate how the membrane potential changes when subject to such a current flow.

Exercises

1. Passive membrane

The following equation describes a passive membrane, which is subject to a current injection:

$$\tau_m \frac{dV(t)}{dt} = -V(t) + E_m + R_m I(t)$$
(2)

At time t = 0 membrane voltage is at rest $V(t = 0) = E_m$.

- (a) Build a model neuron from equation (??). Use $R_m = 10^7 \Omega$, $I(t) = I_0 = 10^{-5} \text{ mA}$, $\tau_m = 10 \text{ ms}$, E = -80 mV. Using Euler method find V(t) as a function of time.
- (b) Consider the following time-dependent current injection:

$$I(t) = \begin{cases} 10^{-5} \,\mathrm{mA} & \text{if } 100 \ge t \ge 10, \\ 0 & \text{otherwise.} \end{cases}$$

Find a numerical solution for V(t). Repeat the calculations for several values of the membrane time constant τ_m .

2. Integrate-and-fire neuron (Optional)

Linear models are unable to produce realistic action potentials, but spikes can be simulated in such models with a simple reset mechanism.

- (a) Modify the Euler method so that every time when the membrane potential reaches the threshold $V_{th} = -54 \text{ mV}$ a spike is generated and the potential is set to the value $V_{reset} = E_m$.
- (b) Using the integration with reset simulate the neuron from Exercise 1 with a constant current intensity I_0 . Show the voltage traces for 500 ms. Compare the plots obtained with different stimulus intensities. How do you interpret the results?

3. Synaptic current

Equation ?? can be also modified by including synaptic conductances in the membrane current:

$$\tau_m \frac{dV(t)}{dt} = -V(t) + E_m - r_m g_{syn}(t)(V - E_{syn})$$
(3)

where $g_{syn}(t)$ is a time-dependent conductance which can be approximated by:

$$g_{syn}(t) = \begin{cases} g_{max}t/\tau_{syn}\exp\left(-t/\tau_{syn}\right) & \text{if } t \ge 0, \\ 0 & \text{if } t < 0. \end{cases}$$
(4)

Here take $\tau_{syn}=10$ ms, $r_m = 1 \Omega m^2$, $g_{max} = 0.5 \text{ S/m}^2$. Plot the following curves on one figure:

- synaptic conductance $g_{syn}(t)$,
- synaptic current $I_{syn}(t) = g_{syn}(t)(V E_{syn})$, channel current $I_m(t) = 1/r_m(E_m V(t))$ and their sum,
- membrane potential V(t).

Consider inhibitory $(E_{syn} = -100 \text{ mV})$ and excitatory $(E_{syn} = 0 \text{ mV})$ synapses separately.

Contact

JAN BENDA (ITB, R. 1301)PHONE: 2093-8652EMAIL: J.BENDA@BIOLOGIE.HU-BERLIN.DEROBERT SCHMIDT (ITB, R. 2316)PHONE: 2093-8926EMAIL: R.SCHMIDT@BIOLOGIE.HU-BERLIN.DEBARTOSZ TELENCZUK (ITB, R. 1309)PHONE: 2093-8838EMAIL: B.TELENCZUK@BIOLOGIE.HU-BERLIN.DE